

The Benefits of Aerobic Dance on Physical Fitness: A Literature Review

Poppy Elisano Arfanda¹, Andi Muh Ridwan Anwar², Shobirotus Soraya³, F Devi Kurnia⁴, Fini May Putriani⁵

Universitas Negeri Makassar¹, Universitas Hasanuddin², STISA Abdullah Bin Mas'ud³, Universitas Negeri Yogyakarta⁴, Universitas PGRI Palembang⁵

ABSTRACT

ARTICLE INFO

Article History

Received: 25-10-2025

Accepted: 29-10-2025

Poppy Elisano

Arfanda

poppy.elisano@unm.ac.id

Keywords :

Aerobic dance,
physical fitness,
 $VO_2\text{max}$, body
composition

Aerobic dance is a form of rhythmic aerobic exercise that combines movement with music, thereby enhancing physical fitness as well as exercise motivation. This literature review aims to analyze the effectiveness of aerobic dance in improving physical fitness based on the latest scientific evidence. Articles were searched through Scopus, PubMed, and Google Scholar databases using the keywords "aerobic dance," " $VO_2\text{max}$," "physical fitness," and "body composition," covering publications from 2022–2025. Based on inclusion and exclusion criteria, 6 articles were selected and analyzed in depth using the annotated bibliography method. The findings indicate that aerobic dance consistently improves cardiorespiratory capacity, $VO_2\text{max}$, and body composition, while also providing psychological benefits such as reduced stress, improved mood, and better quality of life. Interventions lasting 8–12 weeks with moderate-to-high intensity were found to be the most effective in producing significant physiological adaptations. Moreover, population characteristics such as age, baseline fitness level, and training adherence influence the outcomes. This review emphasizes that aerobic dance is a flexible, low-cost, and evidence-based exercise strategy for enhancing physical fitness. However, further large-scale experimental studies are needed to strengthen the generalizability of these findings.

*This is an open access article uses Open Journal Systems 3.5.0.0
Published by <https://ojs.ucp.ac.id>*

INTRODUCTION

Physical fitness is one of the essential aspects of maintaining health and quality of life. A good level of fitness has been proven to correlate with a reduced risk of chronic diseases such as obesity, hypertension, heart disease, and type 2 diabetes mellitus (Warburton et al., 2006). Regular physical activity produces physiological adaptations in the cardiovascular, respiratory, and musculoskeletal systems that support an increase in the body's functional capacity (An et al., 2024). Physical fitness consists of several interrelated components, including strength, endurance, speed, agility, flexibility, balance, power, accuracy, and reaction (Ahmad et al., 2024). These components are essential not only for athletes in combat sports such as *pencak silat* but also for individuals participating in aerobic dance, where coordination, endurance, and muscular power are equally important to support overall performance and health.

Among various forms of exercise, aerobic training including aerobic dance is one of the most popular because it has been proven effective in improving overall health. Aerobic exercise involves repetitive movements of large muscle groups with moderate to high intensity, focusing on increasing oxygen consumption and cardiorespiratory endurance (Liu et al., 2023; Shiroma & Lee, 2010). In addition to its physiological benefits, aerobic dance is

typically accompanied by music, creating an enjoyable atmosphere that enhances motivation and adherence to exercise (Fong Yan et al., 2024).

Recent scientific evidence shows that aerobic dance and other forms of aerobic exercise can improve $VO_{2\text{max}}$, enhance body composition, increase muscle strength and flexibility, and improve cardiometabolic profiles. Several studies have also reported psychological benefits, including improved mood, cognitive function, and reduced levels of depression and anxiety (Dong et al., 2020; Fong Yan et al., 2024; Liu et al., 2023).

Considering the modern sedentary lifestyle and its impact on the increasing prevalence of non-communicable diseases, aerobic dance can serve as an effective, low-cost, flexible, and accessible intervention for various groups in society. Therefore, this literature review aims to examine the latest scientific evidence on the effects of aerobic dance on improving physical fitness based on national and international research findings. This review is expected to provide a scientific foundation for designing effective, safe, and applicable fitness training programs for diverse populations.

Based on previous studies, a more comprehensive review is needed to understand the extent to which aerobic dance can enhance physical fitness both physiologically and psychologically. This literature review will examine various aerobic dance protocols, variations in duration and intensity, and physical fitness measurement outcomes used in prior research. The study aims to determine the effects of aerobic dance on physical fitness based on the most recent available scientific evidence.

METHODS

The article search strategy in this literature review utilized the PICOT method. The keywords used for article retrieval included the phrases "*aerobic dance*," "*physical fitness*," "*VO_{2max}*," and "*body composition*." The search was conducted through national and international journal databases, namely Scopus, DOAJ, and Google Scholar.

Inclusion and exclusion criteria were applied to ensure the selection of relevant and high-quality articles for analysis. The inclusion criteria were as follows: (1) Articles discussing the effects of aerobic dance on physical fitness; (2) Articles published within the last four years (2022–2025); (3) Articles written in English or Indonesian; (4) Articles available in full text; and (5) Studies employing experimental, quasi-experimental, or exercise intervention designs. The exclusion criteria included: (1) Articles not focused on aerobic dance or physical fitness; (2) Articles published outside the 2022–2025 range; (3) Articles unavailable in full text; (4) Studies with observational, theoretical, or literature review designs only.

The results of the article search and selection were presented using the PRISMA flow diagram, consisting of four data collection stages: (1) Identification, searching for articles in selected databases; (2) Screening, filtering articles based on titles and abstracts; (3) Eligibility, assessing the full-text suitability of the articles; (4) Included, selecting articles that met all inclusion criteria for further analysis (see Figure 1).

Population and Sample

The population of this study consisted of scientific articles published in nationally accredited and internationally reputable journals that examined the effects of aerobic dance on physical fitness. The research sample included articles published between 2022 and 2025, written in English or Indonesian, and meeting the established inclusion and exclusion criteria.

Data Analysis

The researchers employed annotated bibliography analysis. The analysis procedure consisted of the following steps:

1. Identifying the referenced sources.
2. Evaluating the authors' qualifications and objectives.
3. Providing a concise summary of the article content.
4. Assessing the significance of each source in addressing the research question.

The initial search through Scopus, PubMed, Google Scholar, and Garuda RistekBRIN databases using the keywords "*aerobic exercise*," "*aerobics*," "*aerobic dance*," and "*physical fitness*" yielded 312 articles. After filtering based on publication year (2022–2025), full-text availability, and topic relevance, 26 articles remained. Following additional screening based on study design (experimental/quasi-experimental) and relevance to physical fitness, 10 articles were retained. Duplicate and incomplete data articles (4 in total) were then excluded, leaving 6 final articles for analysis.

These six selected studies formed the basis of this literature review, encompassing the effects of aerobic dance on improvements in $VO_{2\text{max}}$, muscular endurance, flexibility, body composition, and mental health. The step-by-step article selection process is illustrated in the PRISMA flow diagram (Figure 1).

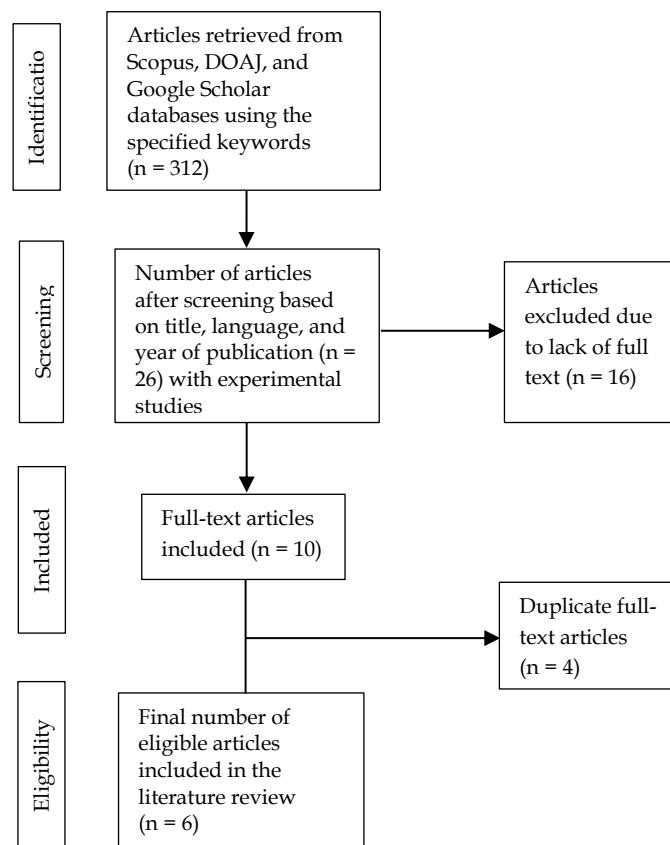


Figure 1. PRISMA Flow Diagram Used in the Literature Search

RESULTS

Over the past four years (2022–2025), several international studies have shown that aerobic exercise particularly aerobic dance has a significant impact on improving physical fitness. The six articles analyzed in this literature review (see Table 1 and Table 2) indicate that

aerobic dance can enhance $VO_2\text{max}$, cardiorespiratory capacity, body composition, as well as physiological and psychological functions across various population groups (Guo et al., 2023; Nicholas et al., 2024; Puspodari et al., 2022; Špirtović et al., 2023, 2025; Thiel et al., 2024)

Table 1. General Overview of Article Findings

Category	n
Year of Publication	
2022	1
2023	2
2024	2
2025	1
Study Design	
Quasi-eksperimental (two-group pretest-posttest)	1
Eksperimental pretest-posttest	2
Randomized Controlled Trial (RCT)	3
Type of Participants	
Adolescent females	1
Healthy adult females	1
Elderly individuals	1
Adult females with HIV	1
Young overweight/obese females	2

Table 2. Summary of Literature Review on the Benefits of Aerobic Dance on Physical Fitness

Source	Study Design	Sample	Aerobic/Aerobic Dance Protocol	Duration & Intensity	Findings
(Puspodari et al., 2022)	Quasi-eksperimental (two-group pretest-posttest)	30 adolescent females (aged 18-24 years)	HADE: high-impact aerobic dance; ZADE: Zumba aerobic dance	8 weeks, 3×/week, 30 min/session, ≥85% HRmax	Both groups showed increases in $VO_2\text{max}$ and SpO_2 , and a decrease in resting HR; HADE was more effective than ZADE in improving $VO_2\text{max}$.
(Špirtović et al., 2023)	Eksperimental pretest-posttest	Healthy adult females	Aerobics mix (combined aerobic movements)	12 weeks	Significant changes in body composition parameters (body fat, lean mass).
(Thiel et al., 2024)	Randomized Controlled Trial (RCT)	Elderly individuals with mild cognitive impairment	Dance/aerobic intervention program	6-month structured intervention; duration & frequency set per study protocol	Intervention maintained $VO_2\text{max}$ and preserved physical fitness compared to control (prevented fitness decline).
(Nicholas et al., 2024)	Eksperimental pretest-posttest	HIV-positive patients undergoing ART for ≥12 months, aged ≥20 years	Moderate aerobic exercise (walking, jogging, and aerobic dance)	30-45 min/session, 100-150 bpm, several times per week for 12 weeks	Significant improvement in $VO_2\text{max}$ and cardiac functional capacity (HR, work capacity) ($p < 0.001$).
(Špirtović et al., 2025)	Randomized Controlled Trial (RCT)	111 young women (aged 18-25 years, BMI ≥ 25)	Structured group aerobics (Mix aerobics, Kickbox aerobics, Step aerobics)	12 weeks, 3×/week, 60 min/session, 60-85% HRmax	Reduced body weight, waist circumference, body fat, LDL, total cholesterol, triglycerides; increased HDL. Mix aerobics was most effective.
(Guo et al., 2023)	Randomized Controlled Trial (RCT)	48 overweight/obese young women (aged 18-25 years)	High-intensity interval aerobic dance with strength components (skipping, front	4 weeks, 3×/week, ~40 min/session (5' warm-up, 30' HIIT, 5'	Significant improvements in body composition (BF%, WC), $VO_2\text{max}$, depression score (SDS), and executive function (Stroop test) vs. control; effects observed

kicks, jumping jacks)	cooldown), $\geq 85\%$ HRmax	from week 2 and sustained through week 4.
-----------------------	------------------------------	---

Based on the literature findings summarized in the table above, it is evident that studies on aerobic exercise and aerobic dance have been conducted with varying designs, samples, and intervention protocols. In terms of study design, there is a combination of quasi-experimental, pretest-posttest experimental, and randomized controlled trial (RCT) approaches, indicating different levels of validity in measuring the effects of aerobic exercise.

Aerobic Dance and VO₂max Improvement

Several studies have shown that dance-based aerobic exercise can significantly improve aerobic capacity. Puspodari et al. (2022) compared high-impact aerobic dance (HADE) and Zumba aerobic dance (ZADE) among adolescent females and found that both increased VO₂max, with HADE showing greater improvement. Similarly, Nicholas et al. (2024) reported that HIV-positive patients who participated in a 12-week moderate aerobic exercise program (walking, jogging, and aerobic dance) experienced significant increases in VO₂max and cardiac function.

Aerobic Exercise and Body Composition

Aerobic exercise not only affects physiological capacity but also influences body composition. Špirtović et al. (2023) demonstrated that a 12-week aerobics mix program for healthy adult women produced significant changes in body fat percentage and lean body mass. Consistent findings were reported by Špirtović et al. (2025) whose group-based aerobic program (mix, kickbox, and step aerobics) successfully reduced body weight, waist circumference, and blood lipid levels, with mix aerobics proving to be the most effective intervention.

Aerobic Dance in Special Populations

The effectiveness of aerobic dance is also evident in populations with specific health conditions. Thiel et al. (2024) examined elderly individuals with mild cognitive impairment and found that a six-month aerobic dance intervention maintained VO₂max and overall physical fitness, slowing the physiological decline associated with aging. Meanwhile, Guo et al. (2023) showed that a high-intensity interval dance-based aerobic program significantly improved VO₂max among overweight and obese women within just four weeks.

Overall, these findings confirm that aerobic exercise and aerobic dance are effective in improving cardiovascular fitness, body composition, and both physiological and psychological functions across diverse populations—from healthy adolescents to clinical groups. Variations in training protocols, such as aerobics mix, high-impact aerobic dance, and high-intensity interval dance-based aerobic programs, yield different outcomes depending on participant characteristics but consistently demonstrate positive health benefits.

DISCUSSION

The findings of this literature review demonstrate that aerobic exercise and aerobic dance have a significant impact on improving aerobic capacity, body composition, lipid profiles, as well as cognitive and psychological aspects across various populations. Overall, the six analyzed studies indicate that the application of aerobic exercise in multiple forms including high-impact aerobic dance, Zumba, aerobics mix, high-intensity interval-based aerobic dance,

and specialized group dance interventions—can effectively enhance physical fitness and metabolic health.

Aerobic Dance and Improvement of VO₂max

Improvement in VO₂max is one of the most consistent outcomes of aerobic dance interventions. Puspodari et al. (2022) reported that High-Impact Aerobic Dance (HADE) was more effective than Zumba Aerobic Dance (ZADE) in improving VO₂max among adolescent females. Similarly, Nicholas et al. (2024) found that adult HIV patients participating in a moderate-intensity aerobic program (walking, jogging, and aerobic dance) showed a significant increase in VO₂max. Guo et al. (2023) also revealed that a high-intensity interval-based aerobic dance program over four weeks improved VO₂max in overweight/obese women. These findings are consistent with recent meta-analyses confirming that structured aerobic training significantly enhances VO₂max, particularly when training duration is ≥8 weeks and intensity reaches ≥75% HRmax (Chen, Tian, et al., 2025).

However, variations among study results appear influenced by training duration and intensity. Short-term interventions (≤4 weeks) generally yield smaller improvements compared to programs lasting ≥8 weeks. Moreover, moderate-intensity training is better suited for clinical or elderly populations, whereas high-intensity programs provide greater benefits for adolescents and young adults. Differences in population characteristics such as health status, age, and baseline fitness level also affect the rate of physiological adaptation.

Aerobic Exercise and Changes in Body Composition

The effectiveness of aerobic dance is also evident in body composition improvements. Špirtović et al. (2023) found that an aerobics mix program reduced body fat percentage and increased lean body mass. Similarly, Špirtović et al. (2025), showed that group aerobic programs (mix, kickbox, and step aerobics) led to reductions in body weight, waist circumference, and lipid profiles (lower LDL, triglycerides, and total cholesterol; higher HDL). Recent meta-analyses also confirm that aerobic exercise—whether dance-based or interval-based—is effective in reducing body fat and improving metabolic health, especially in overweight/obese individuals (Kim et al., 2019).

Nonetheless, these effects are not always consistent, as fat loss outcomes are highly dependent on intervention duration and dietary control. Programs conducted ≥3 times per week for ≥12 weeks produce more noticeable results, while short-term studies often fail to show significant changes. Participant adherence and lifestyle factors outside of training sessions also play crucial roles in determining outcomes.

Aerobic Dance and Cognitive-Psychological Function

Beyond physiological benefits, aerobic dance also contributes to cognitive function and mental well-being. Guo et al. (2023) reported significant reductions in depression scores (SDS) and improvements in executive function (Stroop test) among overweight/obese women. In older adults with mild cognitive impairment, Thiel et al. (2024) found that a six-month dance intervention preserved VO₂max and slowed the decline in physical fitness. Similarly, a recent systematic review confirmed that dance-based interventions not only improve physical capacity but also enhance brain health through simultaneous motor-cognitive stimulation (Tao et al., 2023).

However, psychological and cognitive responses may vary across populations. For elderly individuals with mild cognitive decline, long-term interventions (≥6 months) are more effective

in maintaining function than short-term programs. Conversely, in young overweight/obese individuals, psychological benefits may emerge more rapidly likely due to improved self-esteem and social interaction within group exercise settings.

Effectiveness in Special Populations

The analyzed studies demonstrate that aerobic exercise can be adapted for special populations, including adolescents, HIV patients, overweight/obese women, and older adults (Guo et al., 2023; Nicholas et al., 2024; Puspodari et al., 2022; Špirtović et al., 2023, 2025; Thiel et al., 2024). Positive results across these groups support the principle that aerobic dance is a flexible, low-cost, and safe exercise modality when performed under proper supervision. These findings are reinforced by recent meta-analyses showing that dance-based exercise effectively enhances functional capacity in populations with chronic health risks (Nelson et al., 2023).

The physiological adaptations underlying these effects include cardiovascular (increased stroke volume and cardiac output), muscular (enhanced oxidative enzyme activity and mitochondrial density), metabolic (greater energy utilization efficiency and total energy expenditure), and neurocognitive (simultaneous motor-cognitive stimulation from dance movements promoting brain plasticity). Recent biochemical evidence also suggests that aerobic dance increases levels of brain-derived neurotrophic factor (BDNF), which plays a vital role in neuroplasticity (Chen, Zhou, et al., 2025).

These findings carry important implications for trainers, health practitioners, and researchers. Aerobic exercise programs can be applied to enhance physical fitness in adolescents, young adults, older adults, and patients with chronic conditions. High-intensity interval or dance-based aerobic training is effective for rapid improvement in $VO_{2\text{max}}$ and body composition, while moderate-intensity aerobic dance is more suitable for clinical or elderly populations. Supervision and intensity monitoring (HR monitors, music bpm, RPE scale) are essential to ensure safety and effectiveness. Integrating aerobic exercise with a healthy lifestyle (balanced nutrition, controlled daily activity) is crucial for optimal results.

Several limitations were identified in this review: (1) variation in research design and small sample sizes, (2) differing intervention durations (4 weeks to 6 months), and (3) lack of control for diet and physical activity outside of the training program. Future studies using large-scale RCT designs, long-term interventions, and detailed biochemical assessments are needed to strengthen the evidence on the effectiveness of aerobic dance.

CONCLUSION

This literature review confirms that aerobic exercise and aerobic dance significantly improve aerobic capacity, body composition, lipid profiles, and psychological and cognitive aspects. Across six studies analyzed (2022–2025), consistent evidence shows that dance-based aerobic interventions such as high-impact aerobic dance, Zumba, aerobics mix, high-intensity interval aerobic dance, and group dance programs can enhance $VO_{2\text{max}}$, cardiac function, and reduce body fat percentage across various populations, including adolescents, adult women, HIV patients, overweight/obese individuals, and elderly adults with mild cognitive impairment.

Beyond physiological benefits, aerobic dance also contributes to mental health and executive function, such as reducing depression scores and enhancing cognitive performance. The underlying adaptations include increased stroke volume, cardiac output, oxidative enzyme activity, metabolic efficiency, and motor cognitive stimulation that supports brain

neuroplasticity. This indicates that aerobic dance not only improves physical fitness but also overall quality of life.

Practically, aerobic dance can be recommended as a flexible, safe, low-cost, and enjoyable exercise suitable for various age groups and health conditions. However, variations in training protocols, limited sample sizes, and differing intervention durations remain constraints. Therefore, further large-scale RCTs with comprehensive biochemical measurements are needed to reinforce the scientific evidence regarding the effectiveness of aerobic dance in enhancing physical fitness and metabolic health.

ACKNOWLEDGMENTS

The authors would like to thank everyone who supported this research, including family, colleagues, educational institutions, and all those who provided assistance and inspiration throughout the research process.

REFERENCES

Ahmad, A., Prasetyo, Y., Sumaryanti, S., Nugroho, S., Widiyanto, W., & Amiruddin, A. (2024). El efecto del entrenamiento pliométrico en las patadas de Pencak Silat: Revisión de la literatura (The Effect of Plyometric Training on Pencak Silat Kicks: Literature Review). *Retos*, 61, 185–192. <https://doi.org/10.47197/retos.v61.107665>

An, J., Su, Z., & Meng, S. (2024). Effect of aerobic training versus resistance training for improving cardiorespiratory fitness and body composition in middle-aged to older adults: A systematic review and meta-analysis of randomized controlled trials. *Archives of Gerontology and Geriatrics*, 126, 105530. <https://doi.org/10.1016/j.archger.2024.105530>

Chen, Z., Tian, S., Tian, Y., Shi, B., & Yang, S. (2025). Comparative effectiveness of various exercise interventions on cardiorespiratory fitness in adults living with overweight or obesity: A systematic review and Bayesian network meta-analysis. *Journal of Sports Sciences*, 43(11), 1027–1035. <https://doi.org/10.1080/02640414.2025.2483591>

Chen, Z., Zhou, R., Liu, X., Wang, J., Wang, L., Lv, Y., & Yu, L. (2025). Effects of aerobic exercise on blood lipids in people with overweight or obesity: a systematic review and meta-analysis of randomized controlled trials. *Life*, 15(2), 166. <https://doi.org/10.3390/life15020166>

Dong, N., Cai, J., Zhou, Y., Liu, J., & Li, F. (2020). End-stage heart failure with COVID-19: strong evidence of myocardial injury by 2019-nCoV. *Heart Failure*, 8(6), 515–517. <https://doi.org/10.1016/j.jchf.2020.04.001>

Fong Yan, A., Nicholson, L. L., Ward, R. E., Hiller, C. E., Dovey, K., Parker, H. M., Low, L.-F., Moyle, G., & Chan, C. (2024). The effectiveness of dance interventions on psychological and cognitive health outcomes compared with other forms of physical activity: a systematic review with meta-analysis. *Sports Medicine*, 54(5), 1179–1205. <https://doi.org/10.1007/s40279-023-01990-2>

Guo, L., Chen, J., & Yuan, W. (2023). The effect of HIIT on body composition, cardiovascular fitness, psychological well-being, and executive function of overweight/obese female young adults. *Frontiers in Psychology*, 13, 1095328. <https://doi.org/10.3389/fpsyg.2022.1095328>

Kim, K.-B., Kim, K., Kim, C., Kang, S.-J., Kim, H. J., Yoon, S., & Shin, Y.-A. (2019). Effects of exercise on the body composition and lipid profile of individuals with obesity: a systematic review and meta-analysis. *Journal of Obesity & Metabolic Syndrome*, 28(4), 278.

Liu, X., Soh, K. G., & Omar Dev, R. D. (2023). Effect of Latin dance on physical and mental health: a systematic review. *BMC Public Health*, 23(1), 1332. <https://doi.org/10.7570/jomes.2019.28.4.278>

Nelson, E., Kelly, D., Ni Bhriain, O., Garry, F., Clifford, A. M., & Allardyce, J. M. (2023). The effectiveness of community dance in people with cancer: a mixed-methods systematic review and meta-analysis. *Health Promotion International*, 38(4), daad077. <https://doi.org/10.1093/heapro/daad077>

Nicholas, M., Nsibambi, C. A., Ojuka, E., & Maghanga, M. (2024). Implications of a twelve-week aerobic exercise on functional work capacity in HIV positive clients on antiretroviral therapy. *Turkish Journal of Kinesiology*, 10(3), 191-198. <https://doi.org/10.31459/turkjkin.1526404>

Puspodari, P., Setijono, H., Wiriawan, O., Arfanda, P. E., Raharjo, S., Muhamram, N. A., Himawanto, W., Allsabah, M. A. H., & Koestanto, S. H. (2022). Comparison of the Effect of High Impact Aerobic Dance Exercise Versus Zumba on Increasing Maximum Oxygen Volume in Adolescent Women. *Physical Education Theory and Methodology*, 22(2), 166-172. <https://doi.org/10.17309/tmfv.2022.2.03>

Shiroma, E. J., & Lee, I.-M. (2010). Physical activity and cardiovascular health: lessons learned from epidemiological studies across age, gender, and race/ethnicity. *Circulation*, 122(7), 743-752. <https://doi.org/10.1161/CIRCULATIONAHA.109.914721>

Špirtović, O., Čaprić, I., Katanić, B., Govindasamy, K., Geantă, V. A., Ardelean, V. P., Salihagić, Z., Ajdinović, A., & Stanković, M. (2025). Group Aerobic Exercise Improves Body Composition and Lipid Profile in Young Women with Elevated BMI: A Randomized Controlled Trial. *Applied Sciences*, 15(13), 7489. <https://doi.org/10.3390/app15137489>

Špirtović, O., Čaprić, I., Stanković, M., Đorđević, D., Murić, B., Kahrović, I., Mujanović, R., Mekić, R., Katanić, B., & Jelaska, I. (2023). The effects of preventive aerobics mix on body composition in healthy adult women. *Frontiers in Physiology*, 14, 1132619. <https://doi.org/10.3389/fphys.2023.1132619>

Tao, D., Awan-Scully, R., Ash, G. I., Pei, Z., Gu, Y., Gao, Y., Cole, A., & Baker, J. S. (2023). The effectiveness of dance movement interventions for older adults with mild cognitive impairment, Alzheimer's disease, and dementia: a systematic scoping review and meta-analysis. *Ageing Research Reviews*, 92, 102120. <https://doi.org/10.1016/j.arr.2023.102120>

Thiel, U., Stiebler, M., Labott, B. K., Bappert, J., Langhans, C., Halfpaap, N., Grässler, B., Herold, F., Schreiber, S., & Braun-Dullaeus, R. (2024). DiADEM—Dance against Dementia—Effect of a Six-Month Dance Intervention on Physical Fitness in Older Adults with Mild Cognitive Impairment: A Randomized, Controlled Trial. *Journal of Personalized Medicine*, 14(8), 888. <https://doi.org/10.3390/jpm14080888>

Warburton, D. E. R., Nicol, C. W., & Bredin, S. S. D. (2006). Health benefits of physical activity: the evidence. *Cmaj*, 174(6), 801-809. <https://doi.org/10.1503/cmaj.051351>